On the Scales of Maps. By L. M. Iluupt, Prof. of Civil Engineering Toune Scientific Schonl.
(Read before the American Philusophical Society, Nov. 1, 1878.)
The object of this paper is to attempt if possible the removal of the amhiguities existing in regard to the use of ratios as expressing the scales of maps and degrees of slopes.

Mathematical authorities are by no means agreed concerning the definition of the term ratio. They all maintain that it is an expression for the relation existing between two quantities, but differ in the manner of determining the value of this relation ; souc, as Peck, Davies, Robinson and others, divide the second quantity or consequent by the first or antecedent ; some, as IIutton, Alsop, Ray and others, divide the first by the second quantity, and still a third class, as Chanvenct and others, define it as heing the quotient obtained by dividing one quantity by another. It inay therefore be either $\frac{a}{b}$ or $\frac{b}{2}, 2,000,000$, or $\frac{208}{2} \frac{2}{0} 000$.

The same confusion is found to exist in resignating the seales of maps and drawings. Some publishers and engineers giving it as so many miles, or other clenomination, to the ineh; nthers, as so many inches to the mile. Again in expressing slopes many anthorities use the tang. of the angle made with the horizon, that is the height divirlea by the base $\left(\frac{\Delta}{b}\right)$ while wthers use the co-tang, or $\frac{b}{a}$.

Now if we consider the manner of obtaining the value of the ratio in a (xeometrical Series or progression where no ambiguity exists, we find that as each subsequent term is obtained from its predecessor by multiplying by a constant factor called the ratio, so to obtain this factor or ratio we must necessarily divide any term hy the precoling one, and as this is the only way in which its value can be determinect, it establishes a rule which should be mate to apply to all other cases.

We should then define a ratio as being the expression for the ralue of the relation existing between tico quentities, and as obtained by dividing the second by the Finst.

The query then urises as to which quantity should be considered the first and which the second, and we answer that the given material object to be represented by the map or drawing is the Unit or measure with which the other is to be comparet. The map or drawing may be made of any convenient size, but the object to be represented is alteady fixed or constant in its dimensions, and hence, as the unit or standard of comparisou, should be made the divisor, or denominator of the quantity expressing the ratio : it is consequently the antecelent or first quantity. To illustrate, let it be required to determine the ratio hetween a map and its original in mature.

The trict to be delincated in miniature is the fixed object, invariable in size, which is to be compared with the plot representing it, ind which may be made larger or smaller according to circumstances, hence it become the unit of comparison, and is the antecedent or first quantity, and as such the denominator of the fraction expressing the ratio. The formula will then be:

Field: Plot $=\frac{\mathrm{P}}{\mathrm{F}} . \quad \mathrm{P}$ and F being always reduced to the same deno mination.

Thus a scale of $5^{\frac{1}{2} 80}$ is 5280 ft . of field to 1^{\prime} of map or one mile to 1 ft . $=\frac{1}{1^{2}}$ of a mile to $1^{\prime \prime}$, and not $1^{\prime \prime \prime}$ to 1 mile

It is evidently incorrect therefore to indicate the scales of maps as so many inches to a mile as is frequently done. Take the case of the recent Geological maps of one of our sister states said to be plotted on a seale of $3^{\prime \prime}$ to 1 m or $3^{\prime \prime}$ to $63,360^{\prime \prime}=\frac{6336 n}{3}=21,120$ that is to say the map is 21,120 times larger than the state itself, a manifest absurdity resulting from considering the map as the first quantity or standard rather than the fied itself.

In such cases crrors of interpretation can scarcely arise as the intention is so evident, but there nre numerous others that may lead to misconstruction, as where the drawings of small objects are nearly of the same size as the things represented-thus a scale of $\frac{t_{2}^{\prime \prime}}{}$ to $1^{\prime \prime}$ would confuse a mechanic unless he happened to know which was the larger, the object or the drawing.

So the expression $\frac{1}{4}^{\prime \prime}$ to 1^{\prime} is likewise incorrect as it is the reciprocal of the ratio intended-the inches evidently referring to the drawing and the foot to the object. As it stands, applying the definition of ratio as deduced, it will be equal to $12 \div-\frac{1}{4}=48$, making the dratwing 48 times the size of the model-it should be 1^{\prime} to $4_{1}^{\prime \prime \prime}$.

If it be remembered that the antecedent alrays refers to the ginen object and the consequent to the drusing, no difficulty ean arise. It will always happen then that if the drawing is on a smaller seale than the thing delineated, the ratio will be a proper fraction ; if larger, an improper fraction, and if equall the value will be unity, or $\frac{1}{1}$.

It is hardly neeessary to call attention to the fate that the mamber of scales in use is practically intinite, nud that serious inconvenience results therefrom to Engineers and Surveyors whose work extends over several counties or states, making it frequently necessary to redraw large sections of country. In compiling athases it is the practice of publishers to vary the scales necording to the amome of territory to be represented that the sheet may be filled up, bit mothing is ganed thereby since the scale used for the greutest area to be represented will show with equal clearness all the features of any other area. Moreover the eye becomes necustomed to estimating distances on the mals, with sullecient aceuracy for a recomaissance, when the senle is unifiom, but when variable it leme to great confusion, and especially when the publisher lins neglected to indicate the scate, as sometimes happens.

It is very desiruble to establish, if possible cither hy recommendations of scientifle societies or by general hass, some conventional seales for maps of varione mizes. 'Taking astate of medium mean N. Y. of Pemba, lor the unit, and redncing it to a conveniont size sheet of puper, saty $4 \times 3 \mathrm{ft}$., womble reguire a seate of conson, the same ns is used ly the U. S. Comsat Survey for general charts and reemmaismee, but too small for most other purposes. Larger ntates combld be plotel on the same soale by disserting
them．Foreign countries conducting Geodetic Surveys have adonted such a system．In Prussia，Austria and Switzerland the plane table sheet are plotted on a scale of $\overline{25 \hat{\delta} \delta \sigma}$ ．In Italy the ficld work is plotted on a scale

 $\overline{I o}_{\frac{1}{5} \delta \sigma}^{5}$ ，but these latter，while not being large enough to show parish hound． aries with sufficient accuracy，require about six times the amount of labor in their preparation and are inconvenient．The scale used by l＇russia and Switzerland for general maps is rootrod or one fourth that of the detail sheets obtained from the plane table surveys．

Populous，cultivated and mineral distriets in Great Britain are plotted on a scale of ${ }_{2}$ siod $^{\prime}=1 \mathrm{~m}$ ．to 2： $2.344^{\prime \prime}$ ，partially cultivated and thinly settled dis－ tricts，on a scale of $1^{\mathrm{mb}} \mathrm{to} 6^{\prime \prime}={ }^{50} \frac{1}{5} \mathrm{~s} 0$ ．For the plans of cities of over 4000 inhabitants a seale of sbo or 1 m. to 10.56 feet is ised，and for towns and villages ${ }^{1}{ }^{1} 5 \sigma$ or 1^{m} ．to 5 ft ．is general．

Numerous other instances might be cited showing the great variety of scales in use，but these will suflice．It is evident that in Government or State Surveys some systematic connection may readily be established be－ tween the several seales used，and it is very desirable that this uniformity of scale be made more general．The scale adopted should be just larqe enough to show clearly all necessary detail．Anything more than this is a wasteful expenditure of time and money．

For general maps of States showing intercommunications，a scale of इनी⿱丷天心 will he found sufficiently large．

For maps of counties，in toto，a scale of zof $\frac{1}{b}$ will enable all necessary features to be elearly represented ；this scale applied to Lycoming Co ．，the largest in Penna．．would require a map $\left.6 \frac{1}{2} \times 4\right\} \mathrm{tt}$ ．For townships the sate of ${ }_{250 \frac{1}{0} \sigma}$ is quite large enough，and furnishe＇s an admirable size for the projection of Geological data．

For eities，towns and villages some decimal，sub－mutiples of the above seales sloould be used．

Cadastral maps of farms，parks or estates may be plotted on seales of ${ }_{2} \frac{1}{5}, 5 \frac{1}{6} 0,10^{\prime}$ ，

In indienting the dengees of slopes or the bater of retaining walls，the natural tangent of the angle which the slope makes with the horizon should invariably be used．

To save lime in determining the relative values of some of the most ime portant scales in use，and to aid in introducing the metrie system of lengths，I have with the assistance of Messrs．Wm．M．Pottsand J．W．Van Osten，Jr．， prepared the accompanying tables of equivalents．The first，gives the number of Miles，Kilometers，Poles，Chains，Yurds，Meters and Feet of ${ }^{\circ}$ territory which are equivalent to one inch of map for any given scale． The second，is the reciprocal of the first，and states the amount of map sur－ fice which would be covered by any one or more of the above units，for any scale．

Table of Map Equicalents giving for each

No.	Srale.	Miles,	Kilometers,	Chains,	Pules,
1	\%.379.7800	116.	186.6821	9280.0000	37120.0000
2	צ.090.850	3:3.	53.1078	2640.000	10560.00
3	T.26 \%,200	20.	32.18663	1600.000	6400.00
4	1.200.000	18.9393	30.4791	1515.15	6060.60
5)	$1.01 \frac{1}{3.760}$	16.	25.7492	1280.100	5120.00
6	$1.00 \frac{1}{1.000}$	15.7828	25.3992	1261.62	5046.50
7	811.008	12.8000	20.5994	1024.00	4096.00
8	\% 1.320	12.	19.3129	960.00	3840.00
9	б35.000	10.0221	16.1286	801.768	3207.07
10	\%33.800	10.	16.09329	800.00	3200.00
11	600.000	9.4696	15.2398	757.575	3030.30
12	306.830	8.	12.874.6	640.00	2560.00
13	500.000	7. 8914	12.6996	631.313	2595.25
14	\%00.000	6.3131	10.1597	505.050	2020.20
15	उ80.180	6.	9.65587	480.00	1920.00
16	37\% $\frac{1}{3.000}$	5.918.5	9.5239	473.48	1893.92
17	316.800	5.	8.04664	400.00	1600.00
18	300.000	4.7348	7.61992	378.78	1515.15
19	510.80π	3.78\%8	6.09570	303.03	1212.12
20	200.000	3.15656	5.07985	250.525	1010.10
21		3.	4.827935	240.00	960.00
22	180.000	2.5252	4.0638	202.02	808.08
23	150.000	2.36742	3.80496	189.39	757.57
24		2.	3.21866	160.00	640.0
25	$120.0 \delta 0$	1. 89393	3.05784	151.515	606.06
26	100.000	1.57828	2.53995	126.26	505.05
27	в0.000	1.2620	2.0319	101.01	404.04
$\stackrel{38}{98}$	$\begin{aligned} & 80,200 \\ & 70.200 \end{aligned}$	1.2500	2.01166	100.00	400.00
$\stackrel{29}{ }$	76.500	1.21212	1.9604	96.967	.387.87
30	63.560	1.	1. 5093	80.00	320.00
31	80.00\%	0.94696	1.52392	\% \% 7.75	303.03
32	5.500	$0.93 \% \overline{3}$	1.508737	\% 7.00	300.0
33	50.000	0.78914	1.26996	63.131	252.52
34	50.600	0.63181	1.0159	50.50	202.02
8.5	50.600	0.6050	1.00.i8	50.0	200.0
36		$0.621: 38$	1.	49.7104	198.88
18 98	3n:100	0.6060	0.9753	48.48 .4	198.933
:38	38.018	0.6000	0.96 (.) 6	$4 \% .925$	191.7)
:39	33.7 ${ }^{3}$	0.533.3	0.86146	42.666	1\%).66
40)	30.000	0.47318	0.7619	37.8787	151.48
41	23.345	0.4000	0.6.1373	32.000	
42	25,500	$0.36 \cdot 4.57$	0. $3: 3917 \%$	\$31.5656	120.209
43	75, 180	0.18500	$0.680: 3 \cdot 19$	30.	120.000
14	21.120	(1,3i,i333	(0,533.48	26.666	106. 6368
45	20.1080	0.31565	(1.50)798	25.2505	101.0101
18	16.600	0.318250	0.50290	25.	100.
47	18.1800	0.30383	0.18762	24.242	90.939

lineal inch of Map, the following number of

No.	Metres,	Yards and Feet $\left\{\begin{array}{l}\text { of Actual } \\ \text { Distanee. }\end{array}\right.$		Where I'sed.
1	186682.18	204160.00	612480.00	Map of U. S. in atlas.
2	53107.86	58080.00	174240.00	Map of Pa.
3	32186.635	35200.00	105600.00	U. S. C. S.
4	30479.7	33333.33	100000.0	U. S. C. S.
5	25749.27	28160.0	84480.0	\triangle India.
6	25399.2	27755.77	83333.3	U. S. C. S.
7	20599.416	23528.00	67584.00	
8	19312.95	21120.00	(63360.00	R. R. Va.
9	16128.6	17638.89	52916.66	U. S. C. S.
10	16093.29	17600.00	52800.00	U. S. Eng.
11	152:39.8	16666.6	50000.0	U. S. C. S.
12	12874.65	14080.0	42240.0	Eng. Ord. Sur.
13	12699.6	13888.8	41666.6	U. S. C. S.
14	10159.7	11111.1	33333.3	U. S. C. S.
15	9655.87	10560.0	31680.0	Ludlow's Kep.
16	9523.9	10416.5	31250.0	U. S. C. S.
17	8046.64	8800.00	26400.0	Barnes' Pa. Maps, 1851.
18	7619.9	8344.3	25000.0	U. S. C. S.
19	6095.7	$666 \mathrm{ti6.6}$	20000.0	U. S. C. S.
20	5079.8	5555.5	16666.6	U. S. C. S.
21	482\%.935	5280.0	15840.0	Ludlow's Rep.
22	4063.8	4444.4	13333.3	U. S. C. S.
23	3804.9	4166.6	12500.0	U. S. C. S.
24	3218.66	3520.0	10560.0	Sherman's March.
25	3057.8	3333.3	10000.0	U. S. C. S.
20	2539.9	2777.7	8333.3	U. S. C. S.
27	2031.9	2222.2	6666.6	U. S. C. S.
28	2011.7	2200.0	6600.0	
29	1960.5	2133.33	6400.0	Geol. Sur.
30	1609.3	1760.0	5280.0	Fremont.
31	1523.9	1666.6	$5000: 0$	U. S. C. S.
32	1508.73	1650.0	4950.0	
33	1269.9	1388.8	4166.6	U. S. C. S.
34	1015.9	1111.1	3333.3	U. S. C. S.
35	1005.83	1100.0	8300.0	U. S. C. S.
36	1000.0	1093.6	3280.8	
37	975.24	1066.66	3200.0	Geol. Surv.
38	965.59	1054.33	3163.0	
39	861.458	938.66	2816.1	
40	761.9	833.3	2500.0	U. S. C. S.
41	643.728	704.000	2112.000	
42	639.673	694.44	2083.333	
43	(603.487	660.00	1980.000	
44	535.8969	586.66	1760.000	
45	507.98	555.5	1666.66	
46	502.906	550.00	1650.00	U. S. C. S.
47	$48 \% .61 \%$	533.333	1600.00	

Table of Map Equioulents giviny for each

No.	Scale.	Miles,	Kilometers,	Chalms,	Poles.
48	18.818	0.29700	0.47790	23.760	95.04
49	131850	0.25000	040232	20.	80.
50	15.000	0.23674	0.38099	18.9393	75.75
51	11.880	0.1850	0.30174	15.	60.
52	10.000	0.1578	0.25417	12.626	50.505
53	5.9500	0.15625	0.25100	12.500	50.000
54	9.8	0.15151	0.24376	12.121	48.484
55	-	0.12500	0.20112	10.	40.000
56	F. $\frac{1}{2}$ 200	0.1136	0.18378	9.0909	36.363
57	6.000	0.09471	0.15285	7.5757	30.303
58	5.180	$0.093, \pi 5$	0.15092	7.5000	30.000
59	3.1800	0.078913	0.12695	6.31313	25.252
60	¢.1.850	0.078123	0.12.58\%	6.250	25.000
61		0.07 .375	0.121881	6.0606	24.243
62	\%. 9 \%0	0.062 .50	0.100561		20.000
63	3.	0.05681	0.091391	4.5303	18.1212
64	\%.is3	0.05261	0.08463	4.2060	16.8242
65	उ.158	0.05	0.080466	4.	16.000
66	з. O \%	0.04734	0.07610	3.7787	15.151
67	2.818	0.04687	0.07 .51	3.75	15000
68	¢, 3 ou	0.03945	0.06396	3.1565	12.626
69	2. 5	0.03787	0.06098	3.0379	12.1515
70	1.980	0.03125	0.0.50:9	2.5	10.000
71	T. 180	0.02020	0.032507	1.6016	6.406
T2	T, ${ }^{1} 50$	0.019728	0.031697	1.5767	6.307
73	1. 1.00	0.018933	0.030578	1.5151	6.060
74	T. O \% 6	0.017046	0.027520	1.3636	5.454
\%)	गकी	0.01515	0.024376	1.2121	4.848
76	${ }_{8}^{1}+0$	0.013258	0.021399	1.0605%	4.2420
77	-12	0.0125	0.02011	1.	
78	-10	0.01136	().018:378	0.9091	3.6363
79	-1\%	$0.0094 \% 1$	0.015285	$0.75 \% 5 \%$	3. 0:303
80	sod	0.0078913	0.012695	0.63131	2.5259
81	rio	00075%	0.012188	0.60606	24242
89	3 ¢\%	0.00568	0.009139	0.45303	1.81212
$8: 3$	30	0.00473 .4	0.007610	10.37787	1.51515
84	\% 10	0.003787	0.00)6098	0.30379	1.21.515
8.5	16%	0.008125	0.00.50:9	0. 2.5	1.
86		0.001804	0.003057	0.15151	0.6060
87	\% ${ }^{1}$	0.0009 .47	0.001528	(0.0\%5\%	0.3030
W8	90.3006	0.0006918	0.101	0.6.697101	0.1988105
89	${ }_{3}^{1 / 85}$	(0.000.518	0.00099139	0.0 .158103	0.181212
40	15	0.0001894	0.000:30.5 7	0.015151	0.06606
11		0.00001578	0.00002 .3536	0.0012530.	0.0050 .3
42		0.00601183%	0.00010190	0.00099407	0.003787
4:3		(0.0000)(0)8!	0.000012088	0.00062!	0.002525

lineal inch of Map, the following number of

No.	Metres,	Yards and Feet $\left\{\begin{array}{l}\text { of Arcual } \\ \text { Distance. }\end{array}\right.$		Where Ised.
48	477.96	522.72	1568.1	U. S. C. S.
49	402.325	440.00	1320.00	
50	380.99	416.66	1250.00	U. S. C. S.
51	301.744	330.00	990.00	
52	254.177	277.77	833.33	U. S. C. S.
53	2.51 .004	275.000	825.00	
54	243.763	266.66	800.	
55	201.125	220.00	660.	
56	183.782	200.	600.	
57	152.854	166.66	500.	
58	150.924	165.00	495.	
59	126.950	138:888	416.66	U. S. C. S.
60	125.8238	134.166	412.50	
61	121.88175	133.333	400.	
62	100.562 .5	110.0	330.	
63	91.391	100.	300.00	
14	84.6334	92.592	277.777	U.S. C. S.
65	80.0466	88.	264.	
66	76.1057	83.333	250.00	
67	75.4138	82.5	247.5	
68	63.9673	69.444	208.33	U. S. C. S.
69	60.9811	66.666	200.	U. S. C. S.
70	50.2906	55.55	166.66	
71	32.5079	35.55%	106.66	U. S. C. S.
72	31.6978	34.7222	104.166	U. S. C. S.
73	30.578	33.3333	100.	
$\begin{aligned} & 74 \\ & 75 \end{aligned}$	$\begin{aligned} & 27.520 \\ & 24.3763 \end{aligned}$	$\begin{aligned} & 30 . \\ & 26.666 \end{aligned}$	$90 .$	
76	21.4046	23.3333	70.	
77	20.1125	22.	66.	
78	18.3782	20.	60.	
79	15.2854	16.666	50.	
80	12.695	13.8888	41.666	U. S. C. S.
81	12.18817	13.3333	40.	
82	9.1391	$10 .$	30.	
83	7.61057	8.3333	25.	
84	6.09811	6.6666	20.	
85	5.02906	5.555	16.666	
86	3.0578	3.3333	10.	U. S. C. S.
87	1.52854	1.6666		
88		1.093623	3.280869	
89	0.91391		3.	
90	0.30578	0.3333	1.	
91	0.025368	0.02777	0.083	
92	0.019026	0.020833	0.062i	
93	0.012684	0.013888	0.0415	

A Reciprocal Table of Map Equivalents showing the number of inches of

No．	scale．	1 Mile．	1 Kilometer．	1 Chain．	1 Pole．
1	7． 3 方：．：60	0.0086205	0.005359	0.00010775	0.00002693
2	2.090 .880	． 03030	． 01883	． 000378	0000945
3	1．26 $\frac{1}{6} \cdot 200$	． 05000	． 03106	．000625	． 00015625
4	5.20 1．000	． 052880	． 03280	． 000660	． 0001650
5	1．013：\％${ }^{1}$	．06250	． 03883	．000781	． 00019525
6	r．00\％$\frac{1}{600 \%}$	． 06336	． 03937	．000792	． 00019800
\％	\％11．088	．078125	． 04854	． 0009765	． 0002441
8	760．320	$.08333+$	． 0517%	． 001041	．00026025
9	\％33．000	． 09979	． 06199	． 001247	． 00031175
10	633.600	． 10000	．06213	． 001250	． 0003125
11	бо0．000	．10560	． 06501	． 00132	． 0003300
12	53.8880	． 125000	． 07766	． 001562	． 0003905
13	万01\％	． 12672	． 07874	． 001584	． 0003960
14	70.000	． 15840	．09842	． 00198	． 06049.0
15	380.180	$.16666+$	． 10355	． 002083	．00052075
16	${ }_{575000}$	．16896	． 10498	．002112	．00052800
17	ग58．800	20000	． 12426	． 00250	．0006250
18	з00．00\％	． 21120	．1312：	．00264	． 0006600
19	270．000	． 26400	． 16403	． 01133300	．008250
20	208.000	． 31680	． 19684	．003960	． 0009900
21	190．080	．3：3333＋	． 20711	．004166	．0010415
22	rodiono	． 39600	． 24605	． 004950	． 0012325
23	130：000	． 42040	．2624．5	．005280	．0013200
24	126．750	． 50000	． 31067	．006250	． 0015625
25	52\％．00	． 52800	． 39807	．0066300	． 0016500
26		． 633360	． 30368	．00792	． 0019800
27	उ0．000	． 99200	． 49210	． 0099000	． 0024750
28	7.9 .200	． 8	． 497101	． 01	． $00 \div 5$
99		．82500	． 51261	．1）10312	．002．5780
30		$1.000(k)$	62130	．012500	．0031250
31	\％0． 1000	1.05600	． 05614	．）13300	．003300
3	¢5．700	1.066666	．662801	．（）13333	．00333：3
3：3	$\therefore 10.080$	1．20720	． 88.337	． 01585	．0039095
34	50．000	1.58400	．98421	． 019800	．004950
3.7	s0．600	1.6	．994202	． 0	． 00500
313	98.388	1．60934	1.00000	．0：0116	． 0050290
37	8x， 1800	1． 65000	1．025 20	． 020162	． 00515550
38	$8 x^{3} .618$	1．966666	1.03509	．0208：338	．0052183
39	$38^{3} \cdot 7$ ¢ 4	1.875000	1.16383	． $0: 23 \cdot 13137$	． 0058859
40	30.000	2.11200	1.31288	． 0226.400	． 00 （icior）0
41		2.510000	1．5ib334	． 031250	．007R125
42	25．100	2.58440	1.57474	． 031 （fis0	．0079200
43	28.980		1．05502	．033：338＋	． $60833383+$
4.4	21.120	3.00000	1.86403	．03750） 0	．00938750
4.5	30 品0\％	3.13800	1．9）（88．12	0：39）（i）	．009900）
43	10^{1} ¢0\％		1.98810 .4	． 0.4	． 010
47	rolana	3.300001	2.050 .4	（0．4125	．010312．

Map and parts thereof, of the rarious scales now in use, which represent

No.	1 Metre.	1 Yard.	1 Foot.	Where Used.
1	. 000005359	00000489	. 00000163	Military.
2	. 00001882	. 200017%	. $00000573+$	Sherman's March Map.
3	. 00003106	. 0000284	. $00000946+$	
4	. 00003280	. 0000300	. 00001000	U. S. C. S.
5	. 00003883	. 0000355	$.00001183+$	\triangle India.
fi	. 00003937	. 000083600	. 00001200	U.S.C.S.
7	. 00004854	. 00004438	. 00001446	
8	. 00005177	. 00004 \% $\%$. $00001576+$	R. R. Virginia.
9	. 00006199	. 00005056	. $000015.53+$	U. S. C. S.
10	.00006213	. 0000568	. 000015600	U. S. Eng's.
11	. 000006561	.0000600	.0000200	U. S. C. S.
12	. 000007766	. 0000710	. $0000236+$	Eng. Ord. Sur.
13	. 00007874	. 0000720	. 0000240	I. S. C. S.
14	. 0 OC098842	.0060900	. 00000300	U. S. C. S.
15	.00010355	. 0000946	$.00003153+$	Ludlow's Rep.
16	. 00010498	. 0000960	.00008200	U. S. C. S.
17	. 00012426	. 0001136	.00003753+	Pames' P'a. Map, 1851.
18	. 00013122	. 0001200	. 0004000	U. S. C. S.
19	. 00016403	. 0001500	.0000500	U. S. C. s.
20	. 00019684	. 000180	.0000600)	U. S. C. S.
21	. 00020711	. 0001893	. 0006310	Ludlow.
22	. 00024605	.0002250	. 00007300	U. S. C. S.
23	. 00026245	. 0002400	. 0000800	U. S. C. S.
24	. 00031067	. 0002840	0000946+	Sherman's March
25	.0003:807	. 0003000	. 0001000	U. s. C. S.
26	. 00039368	. 0003600	. 0001200	U. S. C. s.
27	. 00049210	. 0004500	.000150)00	U. S. C. S.
28	. 0004971	.0004545	. 000015151	
29	. 00051261	. 00046875	. 00015625	Geol. Surv.
30	. 00062130	. 00056800	. $00018933+$	Fremont.
31	. 00065614	. 000600	. 000200	U. S. C. S.
82	. $00066{ }^{2}$. 00060606	. 000030202	
33	. 00078737	.000720	. 0002400
34	. 00098421	. 000900	. 0000300	" ${ }^{\text {a }}$
35	. 0009941	. 0009090	. 0003030	
36	. 0010000	. 0009144	.0003048	
37	.00102.522	. 0009375	. 000312.5	Geol.
38	. 001035	. 000947	. 0003156	
39	. 00116 in 3	.0010653	.0003551	
40	. 00131228	. 0012000	. 0004000	U. S. C.S.
41	.00155334	. 0014190	. 0004730	
42	. 00157474	.00144000	. 0004800	
43	.00165692	. 00151515	. 00050505	
44	. 00186403	. 0017040	.0005680	
45	. 00196842	. 0018000	. 0006060	
46	. 001988	. 001818	. 0006060	
47	.00205044	. 00187.00	. 0062500	

A Reciprocal Table of Map Equivatents shoving the number of inches of

No.	Scale.	1 Mile.	1 Kilometer.	1 Chain.	1 I'ole.
48	18, $\frac{1}{8,518}$	3.36698	2.09206	. 042087	01052\% 5
49	18.818 15.80	4.0	2.485 .507	. 05	. 0125
50	$\frac{15000}{15.000}$	4.22400	2.624 .56	1.052800	. 0132000
51	11, ${ }^{1} 80$	5.33333	8.314009	. 06666	. 016666
52	10.000	6.33600	3.93685	. 079200	. 0198000
53	2.900	6.4	3.976808	. 08	020
54	9.500	6.60000	4.10088	.082500	. 020635
3.5	- 720	8.	4.971014	. 10	.025
56	\cdots	8.80000	5.46784	.11000	. 027500
57	\%.1000	10.56000	6.561423	. 132000	. 0833000
58	3. 170	10.6666	6.628018	. 1333333	. 03333
59	3.000	12.67200	7.873%	. 15840	.039600
60	$\text { T. } 950$	12.8	7.953616	. 16	. 04
61	$7 . \frac{1}{500}$	13.20000	8.201770	.165000	. 041250
62	उ: $\frac{1}{\text { ¢ }}$ ¢ 0	16.	9.942028	.2	. 0 5
$(63$	3.6	17.6	10.93568	.22	. 0.55
64	3.15	19.00990	11.81173	. 237623	. 05940575
65	3:188:	20.	12.4243 .4	. 2 J	.0625
66	3.000	21.12	13.122846	. 264	. 066
67	$2 . \frac{1}{9} \% 0$	21.333:33	13.256036	.26666	.06666
68	2. 1000	25.34400	15.74740	. 311880	. 079200
69		26.40000	16.40:354	.3:3000	.082500
70	1.950	32.	19.88105	. 4	. 1
71	T. ${ }^{\frac{1}{2} 50}$	49.50000	22.94414	.618750	.1546875
72	1.250	50.68500	31.49480	. 63360	. 158400
13	1.1500	52.80000	32.80708	. 6680000	. 165000
74	T. $\mathrm{S}_{\text {¢ }}$	$58.66666+$	36.4 .5231	$.733333+$	$.18333+$
\% 5	वर्परण	66.00000	41.00885	. $8: 5000$	200250
76	${ }^{1} 10$	7.5.428.)	41.813726	. 942857	-33571425
7%	-18	80.30418	$49.896 \% 0$	1.003802	.2509505
48	- 20	88.100000	54.6784%	1.100000	275000
T0	ado	105.60000	(65. 61416	1.320000	. 33000
80	晾碞	126.72000)	78. $73 \% 00$	1.5)8.4000	. 39600
81	4×8	132.00000	82.1117%	1.650000	.412500
8.	3 ho	173.00000	109.355694	2.2000	. 5.50000
$8: 3$	3 Jo	211.20000	131.22833	2.640000	.6600)
84	2)0	26.4 .00000	164.0) 3.5 .11	3.300000	.825000
8.5	In	3\%0.	198.8405	4.	1.
817	$1 \frac{1}{10}$	228.000000	328.0708:	fi. (i)00000	1. $1: 50000$
xi	\% 0	105\%.00000	656) $1416 \mathrm{li}+$	13.200000	3.3000
88	80.1506	16) 5). 330	1006.	20.11668	5. 12916
$8!$	+18	1760.	$108: 5.569 .4$	22.	5.5
(H)	1^{18}	5980.00000	3280.7083	60.10000	16.5000
\%)		$63338(1.000000$	13133485000	\%02.00000	188.0000
(1)	,	84480.06)	50491.033 3 +	1050.000)	23.4 .1060
:17\%	;	1207\%0).00	78737.0000	1581.000	$36)(6.000$

Map and parts thereof, of the various scales now in use, which represent

So.	1 Netre.	1 Yard.	1 Foot	Where I'sed.
48	. 00209206	. 00119130	. $00006376+$	U. S. C. S.
49	. 002485	. $0022 \pi 2$. 0007575	
50	.00262456	. 0024000	. 0008000	U. S. C. S.
51	. 003314	.0030303	. 0010101	
52	. 00393685	. 0036000	. 0012000	U. S. C. S.
53	. 0038976	. 00336336	. 001212	
54	. 00410088	. 00375	. 0012500	
55	. 004970	. 004544	. 0015150	
56	. 00546784	. 005000	.001666+	
57	. 006561423	. 0066000	. 002000	
58	. 006628	.0060606	.0020202	
59	. 0078737	.007200	. 002400	U. S. C. S.
60	. 007952	. 007272	. 002424	
61	.0082017\%0	. 0075000	.0025(10)	
62	. 00994	. 009088	.0030\%	
63	.0109356	. 01	. 0038999	
64	. 01181173	. 0108010	$.003603+$	U. S. C.S.
65	. 019424	. 0113181	.0037727	
66	. 0131228	. 012	. 004	
67	. 013256	.0121212	. 0040404	
68	. 01574740	. 014400	. 0048000	U. S. C. S.
69	. 01640354	. 015000	. 005000	U. S. C. S.
70	.0218712	. 02	.007999	
71	. 02294414	.0281250	. 0093750	
72	. 03149480	. 0288800	. 0096000	
73	. 03280708	. 030000	. 010000	" "
74	.036452:31	. $03333+$. $0111111+$	
75	. 04100885	.035500	. 012500	
76	. 04686726	. 0428547	. 0142849	
77	.04989670	. 0456273	. 0152091	
78	.05467847	. 050000	. $016066+$	
79	.06561416	. 060000	. 020000	
80	. 07873700	. 072000	. 024000	U. S. C S.
81	.082017\%0	. 075000	. 025000	
82	. 10935504	. 100000	.033333 +	
83	. 13122883	. 12000	. 040000	
84	. 164033541	. 150000	. 0550000	
85	. 218712	. 2	. 079999	
86	- .32807083	. 30000	. 100000	U. S. C. S.
87	. $6561416+$. 600000	. 200000	
88	1.	. 914392	. 304464	
89	1.093569	1.	. 333333	
90	3.2807083	3.00000	1.0000	
91	39.36850	36.0000	12.0000	
92	$52.43103+$	48.00000	16.0000	
93	78.737000	72.0000	24.0000	

PROC. AMER. PHILOS. SOC. XVIH. 102. IF. IMINTED DEC. 26, 1878.

